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The fine-scale structure of turbulence in a fully developed turbulent duct flow is 
examined by considering the three-dimensional velocity derivative field obtained 
from direct numerical simulations a t  two relatively small Reynolds numbers. The 
magnitudes of all mean-square derivatives (normalized by wall variables) increase 
with the Reynolds number, the increase being largest at  the wall. These magnitudes 
are not consistent with the assumption of local isotropy except perhaps near the duct 
centre-line. When the assumption of local isotropy is relaxed to one of local 
axisymmetry, or invariance with respect to rotation about a coordinate axis (here 
chosen in the streamwise direction), satisfactory agreement is indicated by the data 
outside the wall region. Support for axisymmetry is demonstrated by anisotropy 
invariant maps of the dissipation and vorticity tensors. The departure from 
axisymmetry does not appear to be affected by the Reynolds number. Expressions 
are proposed for approximations to the average energy dissipation and components 
of the mean-square vorticity. These proposals should allow these quantities to be 
measured accurately, at least in the present flow. 

1. Introduction 
Detailed information on the fine-scale structure of turbulence is required to 

provide accurate estimates of quantities such as the average turbulent energy 
dissipation and the mean-square vorticity. This information is needed in all flows, 
but more especially in the inner region of boundary-layer, duct and pipe flows. In 
particular, it can be used to enhance and improve turbulence models. 

Measurements of nine of the twelve terms which appear in the expression for the 
average turbulent energy dissipation F, 

(1) 

(standard Cartesian tensor notation is used with u ~ , ~  representing the velocity 
derivative auz/axj ; repeated indices imply summation), have been made in a self- 
preserving wake at  a small value of the turbulence Reynolds number (Browne, 
Antonia 6 Shah 1987). These measurements also allowed most of the information for 
the mean-squared values of the three components of the vorticity vector ut = cUk uk,j 
(eijk is the alternating or unit permutation tensor, equal to + 1 if i, j, k are in cyclic 
order, - 1 if in anticyclic order, zero if any two of the i, j, k are equal) to be obtained 
(Antonia, Krishnamoorthy 6 Fulachier 1988). 

The measurement of ut,, is much more difficult, primarily because of the spatial 
resolution requirement, in the near-wall region of boundary-layer, pipe or channel 
flows. Progress is, however, encouraging (e.g. the review by Foss & Wallace 1990 on 

E = Y%,j(%,j + %A 
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the measurement of vorticity) and simultaneous measurements of components of ur,j 
in a boundary layer have been reported (Balint, Vukoslav6evid & Wallace 1990; 
Dracos et aE. 1990) although not close to the wall and with relatively complex hot- 
wire configurations (a 9-hot-wire probe for Balint et al. and a 12-hot-wire probe for 
Dracos et a2.). Direct numerical simulations (DNS) of turbulent wall shear flows (e.g. 
Kim, Moin & Moser 1987 ; Spalart 1988) provide complete three-dimensional 
information on the velocity field so that the velocity-derivative data bases generated 
by these simulations are especially suitable for exploring the statistics and structure 
of small-scale turbulence in the near-wall region. Use of these data bases has already 
been made to improve models, Reynolds stress and k - e ,  that can be applied all the 
way to the wall (Mansour, Kim & Moin 1988, 1989). In this paper, we use the data 
base for a fully developed turbulent duct flow to investigate in more detail the small- 
scale structure in this flow, and, in particular, the inter-relationship between the 
various components of B and those of the mean-square vorticity (sometimes 
fluctuating enstrophy) - 

f32 WtW( = % j k E t m n U k . j U n . m  (2) 

within a framework of concepts ranging between homogeneity and local isotropy (or 
isotropy of the small-scale motion). 

Homogeneity, OF invariance with respect to translation of the coordinate axes, 
permits a slight simplification to expressions ( l ) ,  (2), namely 

'horn = "1.j ul,f' (3) 

4 o m  = %om/V. (4) 
- 

Local isotropy - or invariance with respect to reflection and rotation about all 
coordinate axes - allows considerable simplification of (1) and (2), namely 

- 
Ciso = 15wu~,,, ( 5 )  

w!so = 15u;,,, (6) 
- - 

relation ( 5 )  having been first reported by Taylor (1935). 
While the concept of local isotropy has received useful support from spectra of 

velocity derivatives at  large wavenumbers (Antonia, Shah & Browne 1987), isotropic 
relations between mean-square values of velocity derivatives, and therefore ( 5 )  and 
(6), have not been satisfied by the available experimental data, irrespectively of the 
Reynolds number (e.g. Antonia, Anselmet & Browne 1986; Browne et al. 1987). 
Recently, Hussein (1988) and George & Hussein (1991, hereinafter referred to as I), 
showed, using their measurements in a relatively high-Reynolds-number round jet 
and those of Browne et al. (1987) in a low-Reynolds-number wake, that mean-square 
values of velocity derivatives are in quite reasonable agreement with local 
axisymmetry. The latter theory, which was introduced by Batchelor (1946) and 
extended by Chandrasekhar (1950), implies invariance with respect to rotation about 
a preferred direction. It therefore represents a considerable relaxation of the 
constraints imposed by local isotropy (spherical symmetry) although it is more 
constraining than homogeneity. Clearly, local axisymmetry and local isotropy share 
a common property : they both satisfy homogeneity. Conditions imposed by 
homogeneity on the velocity derivatives are satisfied by local axisymmetry and local 
isotropy. The agreement obtained in I between local axisymmetry (the streamwise 
direction was used as the preferred direction) and available measurements in free 
shear flows indicates that more accurate approximations can be obtained for 
quantities such as c and ;;" than by invoking local isotropy. The implication of this 
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FIQURE 1. Taylor microscales in the x1,z2,xQ directions. -, h+ = 180; ----, h' = 395. 

result should be significant both experimentally and from a turbulence modelling 
perspective. Adequate testing of local axisymmetry (and local isotropy) requires that 
all velocity derivatives are available, thus making the DNS data bases indispensable 
for near-wall flows. 

A note of caution should, however, be sounded with regard to the low Reynolds 
numbers (see $2 for details) of the present data bases. At such Reynolds numbers, the 
separation between the largest lengthscale (the channel width) and the smallest 
lengthscale (the Kolmogorov scale which is comparable to the viscous lengthscale in 
the wall region) is small. Consequently, the dissipation and energy-containing ranges 
of the spectrum are not independent and an inertial subrange does not exist. 

2. DNS details and flow conditions 
Direct numerical simulations (DNS) of fully developed duct flow were performed 

at R = 3300 and 7900, where R is a Reynolds number based on the centreline velocity 
and the channel half-width h. These latter values correspond to h+( =hU,/v) values 
of about 180 and 395 respectively. The superscript + denotes normalization by the 
kinematic viscosity of the fluid v and/or the friction velocity U, (unless otherwise 
stated, this normalization is used in all the figures). The numerical algorithm used 
and other details of the simulations can be found in Kim et al. (1987). For the R = 
3300 case, 128 x 129 x 128 spectral modes - in the x1 (streamwise), x2 (normal to the 
wall), x3 (spanwise) directions respectively - were used in the computation. The 
spacings between collocation points in the streamwise and spanwise directions were 
Ax; x 11 and Ax: x 4. Non-uniform meshes were used in the normal direction, with 
the minimum spacing Ax: x 0.05 at the wall and the maximum spacing Ax: x 4.4 at 
the centreline. For R = 7900, roughly the same collocation grid spacings were used 
(Ax: x 7, Ax: x 4, Ax: x 0.05-5.5) to minimize the effect of grid resolution. 

The flow is homogeneous in the x1 and xg directions since, at any value of x2, the 
averaging was carried out in both these directions. All the results presented in this 
paper were obtained by averaging over one field (one realization of 128 x 128 points 
in the (xl, z,)-plane) only. Several derivative statistics were computed by averaging 
over six fields, however, and no significant difference was observed, indicating that 
the samples used in the present study were adequate. 
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FIQURE 2. Turbulence Reynolds numbers. -, h+ = 180; ----, h+ = 395. 
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FIGURE 3. Kolmogorov microscale. -, h+ = 180; ----, h+ = 395. 

A detailed description of the flow conditions, including distributions of mean 
velocity, Reynolds stresses and higher-order moments of velocity fluctuations can be 
found in Kim et al. (1987) for h+ = 180. For h+ = 395, detailed statistics of pressure 
fluctuations were presented by Kim (1989) while distributions of the mean velocity 
and Reynolds stresses were given in Antonia et al. (1991). Information of relevance 
to the present study is presented in figures 1-3; a logarithmic scale is used for the 
abscissa, here and in subsequent figures, in order to emphasize -- the wall region. Figure 
1 shows distributions of the Taylor microscales A 1 2  = U:~/U:,;. Close to the wall, A: 
is approximately constant while A: reaches a maximum near the edge of the viscous 
sublayer. There is essentially no Reynolds-number effect on A: in he wall region. 
Outside the wall region, A: and A: are approximately equal and smaller than A t  by 
a factor of about 2. 

The turbulent Reynolds numbers, defined by R,( = u$Ai/v,  are given in figure 2. 
The largest value ( x  180) is attained by R,, at y+ x 10. In the wall region, the 
magnitude -1 of R, d increases very slightly with h+, the increase reflecting mainly the 
increase in u:2z with h+. The Kolmogorov lengthscale 7 = (v3/$ is plotted in figure 
3. Like A:, 1;1+ is approximately constant in the wall region and increases in the outer 
region. Near xl = 0, 'I+ is about 1.5, which is comfortably larger than the minimum 

- 
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spacing of 0.05 used for Ax; in this region. Near the centre of the channel, the 
magnitude of Ax: ( x  5) is comparable to q+ and therefore adequate for resolving 
the smallest lengthscales. The resolution in the homogeneous x1 and x3 directions 
(Ax: x 11 and 7 and Ax: w 4 )  appears, at  first sight, to be less adequate, especially 
very near the wall. Examination of computed spectra, however, showed no pile-up 
of energy at high wavenumbers even though the resolved grid scales in the horizontal 
directions were greater than the Kolmogorov lengthscale. In the wall region, it is less 
appropriate to compare Ax: and Ax: with q+ since (see $3) the major contribution to 
C+ is from derivatives in the x2 direction. The resolution Ax: (=  0.05) is quite 
adequate in this direction. 

It is important to comment on the relatively small magnitudes of RA1 (figure 2 ) .  At 
the channel centreline, R,, is about 30 at h+ = 180 and 52 at h+ = 395. 

3. Distributions of C, ;;" and their components 
In this section, we consider the distributions of Band 2 and of their components : 

- - -  _ _ -  
B = v[2(u:, + u;,2 + u;, 3) + (g2 + u;, +T 1 3  +q-+F+- 2 3 4 . 2 )  3 1 

-k 2(ui ,z  u 2 , i + ~ + u 2 , 3 u 3 , 2 ) 1 9  (7) 
- - - - - - - 
w2 = u:,2+';,1 +':,3+ui, l + u ; . 3 + u ; , 2 - 2 ( u 1 ,  2 u Z , 1 + U l , 3 U 8 , 1 +  u2,3 2)' (8) 

The nine square derivative terms which appear in (7) and (8) a x l o t t e d  in figure 
4 .  As expected, the major contributors near the wall are G and u : , ~  (figure 4 a ;  note 
that the vertical scale in figure 4 (b,  c )  is greatly exaggerated by comparison to figure 
4 a ) .  The contribution from .:,9 (figure 4a) becomes important outside the sublayer. 
It reaches a maximum near x A =  15 and is of the same order as & at larger values 
of x2. There is a bump in the u?, distribution which corresponh2proximately with 
the local maximum in s. The bump in and the peak in u : , ~ ,  both quite large 
in magnitude compared with 6 (figure 4 c ) ,  may be due to the simultaneously large 
instantaneous gradients in u 1 , 2  and u1,3 that are associated with low-speed streaks 
(e.g. Blackwelder & Swearingen -- 1990; Antonia & Bisset 1990). The relative shapes -- 
and relative magnitudes of the u : , ~ ,  and are very similar to those of Of2, Sf3 
and (0 is the temperature fluctuation) measured by Krishnamoorthy & Antonia 
(1987) in the wall region of a turbulent boundary layer. This similarity arises from 
the strong correlation in this region between u1 and O (e.g. Antonia, Browne & Shah 
1988 ; Kim & Moin 1989). 

Figure 4 ( b )  shows the other three terms involving derivatives in either the x2 or x3 
direction. All these terms have a maximum well away from the wall, the largest one 
being that of (at x: w 35), one of the contributors to z, the longitudinal mean- 
square vorticity. Terms involving derivatives in the x1 direction (figure 4 c )  are 
generally smaller in magnitude than those in figure 4 ( b  or a) ;  is the largest of 
the groups of terms in figure 4(c) in the wall region. The three cross-terms (not shown 
here) that appear in (7) and (8) have magnitudes comparable to the terms in figure 
4 (c ) ,  and make a negative contribution to B and a possible contribution to 2. 

Except for S, the magnitude of all terms in figure 4 increases as h+ increases. This 
increase extends all the way to the wall, so that the Reynolds number affects the wall 
region as well as the outer region (the use of xi is inappropriate for this latter region ; 
the ReynoldsTnumber influence remained in evidence when the data were replotted 
in terms of x,/h). At the wall, G and increase by about 33%. 
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FIQURE 4. Mean-square derivative terms in the expressions for 6 and 3. -, h+ = 180; 

, h’ = 395. __- 

The distributions of the three components of 2: 
- - -  
4 = u:,2+u~,3-2%,3u3,2* (9) 

(10) wa - ui, 3 4.i-2-3 

4 = 4 , i  +G, 2 -2% 2u2.1, (11) 

are shown in figure 5.  These distributions are very similar to those in figure 4(a) (they 

- - -  
2 -  2 + 

- - -  
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FIQURE 5. Distributions of the three components of mean-square vorticity. -, h+ = 180; 
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FIQURE 6. Distributions of 6, &,,, and the ratio wC2/e+. - , h+ = 180; --, h+ = 395. 
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are -- identical at  the wall) since the terms in figure 4 (a) represent the dominant terms 
in of, w i  and 2. The effect of Reynolds number on 3 and istherefore considerable 
(an increase of about 33 % in each of these) but negligible on o:. The latter behaviour 
does not seem to be easily reconcilable with the notion of hairpin vortices being 
stretched with increasing Reynolds number since this would imply an increase in all 
three components; it is more consistent with a not necessarily connected 
agglomeration of longitudinal and spanwise vortices. The independence of of the 
Reynolds number is apparently consistent with the scaling of the average spanwise 
spacing (normalized by wall variables) of low-speed streaks. 

Figure 6 shows that distributions of F+, equation (l), and gem, (3), are practically 
coincident, indic% that the net contribution of the cross-terms in F is negligible. 
The ratio ~ h o m / ~ o ~ o m  is also close to 1, consistent with (4), everywhere in the flow. 
Note that Cis maximum at the wall but exhibits a local peak near xi x 15, where 
most of the quantities plotted in figure 4 exhibit a peak and the average turbulent 
energy production is a maximum (Kim et al. 1987). 
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4. Anisotropy invariant mapping 
Lumley & Newman (1977) examined the anisotropy of the Reynolds stress tensor 

by considering the second (11) and third (111) invariants of b , ,  the Reynolds stress 
anisotropy tensor, defined by 

u u s  
2k 3 

6 ,  = 2 - 3 ,  

where k E is the average turbulent kinetic energy and a,, is the Kronecker delta 
tensor (S,, = 1 for i = j and 0 for i + j). The second and third invariants of b ,  are 
given by (the first invariant b,, is zero for incompressible flows) 

All the states that characterize b ,  can be identified on a plot of -11 vs. 111. The 
limiting values of the invariants delineate an anisotropy invariant map (AIM) such 
as shown in figure 7. This plot has been used to examine, for example, the influence 
of boundary conditions (Dekeyser, Fulachier & Verollet 1977) and flow rotation 
(Reynolds 1989) on the anisotropy of the Reynolds stresses. DNS data permit AIMs 
to be constructed for other quantities such as dissipation and vorticity (Lee & 
Reynolds 1985 ; Mansour et al. 1988). In the case of dissipation, the anisotropy tensor 
is given by d,, 

where c,, = ~vu,, k u,~ k and cis equal to half the scalar trace of B,,) namely F = sit. For 
vorticity, the anisotropy tensor is denoted by vtj : 

Fa- 
v. =+-&,. 

w2 d 

The second and third invariants of d ,  and vtj are given by expressions analogous to 
(12) and (13). 

The AIMs for b,,,d,, and v,, are shown in figure 7(a-c), respectively. 
Very near the wall, the invariants reside near the upper boundary, which is 

described by G = 8 + 3111 + I1 = 0 and characterizes two-component turbulence (one 
component is zero). In  the case of the Reynolds stress, is negligible near the wall 
while one of the diagonal components (FZ2) of B,, is negligible in this region. In the case 
of w, the component of vorticity normal to the wall is negligible near xl = 0. As 
xi increases, the upper boundary is followed in the direction of the top cusped vertex 
(I1 = i, I11 = 5). This point corresponds to one-component turbulence (two 
components are zero). The invariants I1 and I11 reach a maximum before following 
the right-hand boundary of the AIM towards the bottom cusp (I1 = I11 = 0) ,  which 
characterizes isotropic turbulence. The location of the maximum is at xi x 8 for the 
Reynolds stress, xi x 4 for the dissipation and xi x 3 for vorticity. The right-hand 
boundary of the AIM appears to be followed more closely by the dissipation and the 
vorticity than by the Reynolds stress data. The right- and left-hand boundaries of 
the AIM characterize axisymmetric turbulence. For example, in the case of v,,, two 
of the components of are nearly equal while the third is larger (right-hand 
boundary) or smaller (left-hand boundary) than the other equal components. 
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FIGURE 7. Anisotropy invariant map for the Reynolds stress, dissipation and vorticity tensors, the 
subscripts b, d and v indicating these tensors. (a) Reynolds stress; (b )  dissipation ; (c) vorticity. -, 
h' = 180; ---, h' = 395. 
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x: 

Lee & Reynolds (1985) described? this state as disk-like (the turbulence is pulled 
out in two directions and squeezed in the other direction) for the right-hand 
boundaries of the stress and dissipation AIMS and the left-hand boundary of the 
vorticity AIM. The left-hand boundary of the stress and dissipation AIMS and the 
right-hand boundary of the vorticity AIM were described as rod-like (turbulence 
consisting of elongated line vortices). These authors introduced a parameter A ,  

:I11 
(-$II)i’ 

A = -  

to illustrate the difference between the two modes of axisymmetric turbulence. A,  
and A ,  are equal to + 1 for disk-like turbulence and - 1 for rod-like turbulence. A,  
is equal to 1 for rod-like turbulence and - 1 for disk-like turbulence. The variation 
of A,, A ,  and A ,  with xi is shown in figure 8. All three quantities approach + 1 at the 
edge of the sublayer, with A ,  actually reaching this value (see also figure 7c).  A, 
remains close to + 1 throughout the wall region, decreasing somewhat abruptly for 
xi 3 40. The magnitude of A ,  changes rapidly from + 1 to nearly - 1 (at s l  x 20) 
becoming positive again for larger values of xi. The ”1: range in figure 8 has been 
restricted to xi < 100 as the behaviour of A, ,A,  and A ,  becomes very erratic at 
larger 2: (in this region, the magnitude of I1 becomes negligible). The behaviour of 
the vorticity AIM (figure 7 c )  and of A ,  (figure 8 )  suggests a change from an elongated 
vortex structure at the edge of the sublayer to a disk-like structure near xi % 20. In 
this context, Townsend (1951) observed that conditions suitable for the production 
of vortex sheets are more common than for the production of vortex lines. By 
contrast, Kuo & Corrsin (1972) concluded that the fine structure of turbulence is 
more likely to be rod-like than either spherical or slab-shaped. 

The information in figures 7 and 8, taken collectively, seems to support the 
existence of a rod-like structure near the edge of the sublayer and a change to a disk- 
like structure near xi = 20. While it is difficult to draw firm conclusions for larger xi 

t Reynolds (1989) emphasized however that, while b , ) ,d ,  and vt, contain information about 
‘componentality ’ (i.e. provide a measure of the relative importance of the stress, dissipation and 
vorticity components), they do not contain any information about the ‘dimensionality ’ of 
turbulence. 
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FIQURE 9. Distributions of K,,i = 1 to 4, equation (14). -, h+ = 180; ---, h+ = 395. 

on the basis of figure 8 (owing to the small magnitudes of the invariants in this region), 
the overall trend of the AIMS in figure 7 tends to favour a disk-like behaviour prior 
to approaching isotropy (near the channel centreline). Note that there is no 
discernible Reynolds-number effect on the turbulence states indicated by either the 
anisotropy invariant maps, figure 7, or the parameters A ,  figure 8. 

Near the channel centreline, all three invariant maps in figure 7 indicate an 
approach towards isotropy, a trend which is also supported by the data in $5. 
Further, the high-wavenumber region of the spectra (not shown here) of all three 
velocity fluctuations agrees with local isotropy. Similar agreement has previously 
been noted (e.g. Champagne 1978) in high-turbulence-Reynolds-number flows but 
also in flows with values of R,, comparable to the present centreline values. 

5. Local axisymmetry us. local isotropy 
Local isotropy requires, inter alia, that the following ratios are all equal to 1 : 

-- -- -- -- 
K ,  = 2 4 ,  Ju;, , K ,  = 224, Ju;, ,, K ,  = 2 4 ,  ,/u;, 2 ,  K4 = 2 4 ,  Ju;, ,. (14) 

Browne et al.'s (1987) measurements in a turbulent wake and their review of 
available experimental data in a number of flows indicated that K ,  x K ,  > 1 while 
K ,  x K ,  < 1. The present distributions of K ,  ( i  = 1 to 4), figure 9, are generally 
consistent with these trends, although K ,  is significantly larger than K ,  near the wall. 
These ratios approach 1 near the duct centreline. The effect of the Reynolds number 
is quite small, the magnitudes of Ki being slightly smaller at h+ = 395 than h+ = 180. 

Local axisymmetry (with x, as the preferred axis) requires, inter alia, that the 
following ratios are equal to 1 : 

-- -- -- -- 
Mi uf,z/u:,3, M2 = u:,i/u;,i, M3 U:,,/u:,,, M4 '4,3/'4,2. (15) 

Equation (15) is, of course, a requirement for local isotropy also. M ,  = 1 implies that 
K ,  = K4 while M ,  = 1 implies that K ,  = K,.  As noted above, the data examined by 
Browne et al. indicated reasonable support for Mi = 1 ,  even though K ,  =k 1. The Mi 

13 FLM 233 
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10. Distributions of M , , i  = 1 to 4, equation (15). -, h+ = 180; --- -, h+ = 395. 
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. Comparison with axisymmetry and isotropy of cross-terms in (16), ( 1 7  
-, h' = 180; ---, h+ = 395. 

') and (18). 

distributions in figure 10 approach 1 more rapidly than K, .  M3 departs slightly from 
1 near the edge of the sublayer. M ,  decreases as xi increases, reaching 1 in the region 
xi 2 40. M ,  and M4 increase towards 1, but the convergence is slower than for M , .  

Locally axisymmetric expressions for the three cross-terms that appear in 
relations (7)  and (8) were given in I : 

- 
ul ,  2 %,1 = %, 3 u3, 1 = -%' 2 1,1, (16) - -  

% , 3 % , 2  = % . l - $ i , S .  (17) 

Equation (16) also applies for local isotropy but the isotropic equivalent of (17) is 
- 

u 2 , 3 u 3 , z  = -h2 2 1.1 (18) 
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since all three cross-terms are equal. This follows from the isotropic requirement 

The ratios of each of the cross-terms in (16)-(18) to (-$z) are shown in figure 11. 
Also included in the figure is the ratio between the left- and right-hand sides of (17). 
Equation (16) is reasonably well satisfied for xi 2 50 while (17) represents only a 
slight improvement over (18). 

The assumption of local axisymmetry allows considerable simplification of relation 
(7) since only four terms are needed to estimate C, as compared with the nine terms 
in the homogeneous relation (3). Two axisymmetric forms for c were written in I 
(with x1 as the preferred axis), and are reproduced below as q and 5, namely 

- - - -  
5 = (&':,I + 2u:, 3 + 2 u i , 1  + @ i , 3 ) ,  (19) 

% = v ( -z+ 2& + 2<+ 8 c ) .  ( 2 0 )  
Distributions of the ratios q/c,q/c and 
grossly underestimates F in the region xi < 60 (it is only half-a a t  x: = 40) and 
remains below it up to x 120, F; and F; are good approximations to C outside the 
buffer region (x: > 40). As the wall is approached, 5 is a much closer approximation 
to F than q. Note that 4 overestimates B in the near-wall =ion whereas 
underestimates it. As xi + 0, 5 tends to zero while 4 tends to ~ v u : , , .  At the wall, B 
is equal to V ( U ~ , ~ + U ~ , ~ )  which is significantly smaller than 2 v C  since is 
approximately +x near the wall (figure 4a). 

The agreement of F;, and especially with %, with C outside the buffer region has 
implications for the measurement of the dissipation in this part of the flow. All the 
terms in (19) can be obtained with a 1: x -probe as used in I and Hussein (1988). The 
probe consists of three inclined wires, the central one being nominally at  45' to the 
flow, the other two being parallel at 135'. The configuration essentially replaces two 
laterally adjacent x -wires but has the advantage of allowing the lateral separation 
(Ax3 if the wires are in the (xl,xz)-plane; Axz if they are in the (x,,x,)-plane) to be 
small without the possibility of increased flow interference from the supports of two 

are shown in figure 12. While 

- -  

13-2 
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FIGURE 13. Approximations to 5, equation (21), and to the wall value of E, (22). The distribution 
of 6 is also shown. (a) h+ = 180; ( b )  h+ = 395. 

x -probes. Expression (20), which is more attractive experimentally than (19), 
contains u ~ , ~ ,  a term which can be measured with parallel single hot wires. 
Measurements of 8, were made by Krishnamoorthy & Antonia (1987) in the wall 
region of a slightly heated boundary layer using parallel cold wires (diameter = 
0.63 pm). Identical wires can be used for u ~ , ~  (the near-wall vicinity problem appears 
to mainly affect the measurement of 0, the fluctuating quantities being on the whole 
unaffected). However, the term u2,2 is relatively difficult to  measure, as it would 
involve the use of two x-probes separated in the y-direction. Apart from the 
obviously stringent constraints on spatial resolution, it would be best to avoid 
measuring u2 altogether (our experience and the literature suggest that the accurate 
measurement of this quantity with x -wires is difficult, especiallfin the wall region). 
Figure 4(b,  c) indicates that is only 
slightly smaller than &. Equation (20) was therefore reduced by trial to 

This is a very close approximation to  5 (figure 13) and a good approximation to T 
for xi 2 30. 

is only slightly bigger than u ; , ~  and 

(5)app = 4 2 G  + 11K). (21) 
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FIQURE 14. Approximation to c, equation (23). -, h' = 180; ---, h+ = 395. 

Near the wall, axisymmetry is less relevant (as indicated by the AIMS in figure 7).  
The dominant terms in this region are and q. Since the latter term is equal to 
about &x (at both values of h+), a reasonable approximation to the wall value of F 
should be 

( a p p  x .(@q2. (22) 

This quantity, also shown in figure 13, provides a reasonable approximation for Fin 
the sublayer but not in the buffer region. From a measurement viewpoint, (21) and 
(22) suggest that reasonable estimates of g can be obtained in the region xi > 30 and 
within the sublayer by using a pair of parallel hot wires (aligned in the x9 direction). 
This should be quite a viable approach for xi > 30. It would be more difficult to 
implement within the sublayer, unless a relatively thick sublayer were available (e.g. 
the experiment of Eckelmann 1974 in a similar flow). 

An expression which mimics B accurately everywhere in the flow should at  least 
contain the three terms in figure 4(a )  as they are important in the wall region. All the 
other terms in figure 4 are (individually) smaller in magnitude and have 
approximately the same shape. It was assumed that their sum could be approximated 
by 01% where the magnitude of 01 could be estimated by trial. It was found that 
a = 8, namely 

provides a very close approximation of geverywhere in the flow (figure 14), the error 
being only 10% at xi = 10. All the terms in (23) can be measured with the 1; x - 
probe. However, if it is difficult to get closer to the wall than xi = 30 with such a 
probe, approximation (21) can be more easily implemented (using a pair of parallel 
hot wires) than approximation (23). 

It seems appropriate here to comment on the choice of the x1 axis as the preferred 
direction in deriving the relations for local axisymmetry. It was noted in I that the 
choice of the mean flow direction is not unreasonable in the sense that, for most 
simple shear flows, 2 x 2 (the transport equations for the normal stresses indicate 
that the energy is first supplied to 2 before it is distributed to the other components). 

- - -  
(%pp = . ( u : , , + u ~ , , + U : , , + 8 q 2  (23 1 
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FIGURE 15. Comparison with isotropy of mean-square vorticity components. -, h' = 180 ; 
, h' = 395. _ _ _  

This symmetry is apparently reflected in the relations between mean-square velocity 
derivatives, as shown in (15) and figure 10. Although the results of I and the present 
ones represent adequate ( a  posteriori) justification for the use of x1 as the preferred 
direction, it is nevertheless possible that there may be more appropriate choices for 
the preferred direction. One possibility, mentioned in I, is the direction (45") of the 
principal axis of the local mean strain rate. This may, however, be quite different to 
the principal directions of the stress, dissipation or vorticity tensors. For example, 
the present data indicate that the principal stress is practically in the x1 direction in 
the sublayer. As y+ increases, the inclination increases to a maximum of about 20' 
(at y+ x 100) before returning to 0" at the centre of the channel. It is finally worth 
noting that the information in figure 7 is, by definition of the AIM, independent of 
the choice of coordinate axes so that the comparison of the data with axisymmetry 
(figures 7 and 8) is also unaffected by this choice. 

6. Implications for vorticity 
Local axisymmetry (and local isotropy) requires that 

- -  
c.d; = id;. 

This follows from (lo), (ll), the first two relations in (15) and (16). Figure 15 shows 
that (24) is reasonably well approximated for xl 2 30. (When x: >, 60, is also 
nearly equal to 3 or 2.) The isotropic values a;, W E ,  c.di are given by 

- - -  - 
w; = id; = c.d; = 54,. 

Figures 5 and 15 show that this is not valid except perhaps near the duct centreline. 
Axisymmetric and isotropic expressions for 2 are different owing to the difference 

between (17) and (18). Substitution (17) into (9) results in a partially axisymmetric 
expression for q, namely - - -  

c.d; = u$,2+@;,3-$i i i .  (25) 
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FIGURE 16. Approximations to w i ,  ui and 0:: w:, equation (25); 2, (26); 3, (27). (a) h+ = 180; 
( b )  h+ = 395. 

Axisymmetry would also require that (i.e. M4 = 1 ,  equation (15)) 
but this is only satisfied for xi 2 60 (figure 10). As shown in figure 16, (25) is a good 
approximation to $ almost everywhere (it underestimates slightly the local 
maximum of at xi 20. 

and 2, the major terms on the right-hand sides 
of (10) and ( 1 1 )  were retained and the others replaced by b c .  The following 
approximations (with /3 = 2 )  : 

is equal to 

To provide approximations to 

- -  
w: = u;, a + 2G, 

w: = u;, 2 + 2u;, 1' 

(26) 

( 2 7 )  
- - -  

are quite satisfactory (figure 16) for both values of h+. A parallel-wire probe should 
allow relatively accurate measurements of 2 and 2 if use were made of (26) and (27) .  
A 1 )  x-probe should provide the data required to obtain wi (u:,~ and are 
obtained in separate experiments after a 90" rotation of the probe). Well-known 
difficulties of measuring x2 and x3 derivatives with hot wires are the selection of an 

- -  
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appropriate separation between the wires and a suitable method for correcting for 
the effect of this finite separation. The DNS database should be extremely valuable 
for selecting this separation and assessing the validity of the correction. For this 
reason, it is important that measurements be made in the same flow and Reynolds 
numbers as the present database, and such measurements are currently being 
planned. (It is also possible to check the effect of separation by directly assessing a 
model for a parallel-wire probe using a DNS database, in a manner similar to that 
used by Moin & Spalart (1989) in evaluating the response of an x -probe.) 

7. Conclusions 
Direct numerical simulations of a fully developed turbulent channel flow at two 

low Reynolds numbers show that the mean-square values of the velocity derivatives, 
when normalized by wall variables, increase significantly with Reynolds number, 
particularly in the wall region (less than about 40 wall units). Consequently, the 
averaged dissipation and vorticity components are affected in a similar manner. 

The average dissipation and mean-square vorticity are not consistent with local 
isotropy, except near the channel centreline. The assumption of axisymmetry, which 
is intermediate between the assumptions of homogeneity and local isotropy, allows 
reasonable estimates of Band 3 to be made outside the wall region. This assumption, 
- which represents a relation of isotropy, makes it possible, therefore, to measure Band 
o2 outside the wall region using relatively simple hot-wire configurations. It has also 
been shown that g and the components of 3 can be closely approximated by 
expressions which should permit adequate measurements to be made everywhere in 
the flow. 

Anisotropy invariant maps for the Reynolds stresses, dissipation and vorticity 
indicate that the degree of departure from axisymmetry does not seem to vary with 
Reynolds number. This is not altogether surprising since the present data and the 
available experimental evidence (e.g. Antonia et al. 1986) suggest that the deviation 
from local isotropy of mean-square values of velocity derivatives also appears to be 
independent of the Reynolds number. 

The anisotropy invariant map for vorticity suggests a transition from a rod-like 
vortical structure very near the wall to a disk-like structure further away from the 
wall. 

R. A. A. and L. W. B. B. acknowledge the support of the Australian Research 
Council and the Center for Turbulence Research. 
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